Integrator Leakage for Limit Cycle Suppression in Servo Mechanisms with Stiction
نویسنده
چکیده
Background: It is well known that the positional PID (Proportional-Integral-Derivative) control of a servo mechanism with stiction always leads to a limit cycle. Related to this fact, two basic questions have still remained unanswered. The first question is, if the limit cycle occurs, how large it becomes for a given value of stiction force. The second question, which is of more practical importance, is how we should modify the PID controller to avoid this limit cycle with minimal sacrifice of the servo performance. Method of Approach: This paper presents a rigorous analysis in providing particular answers to these two questions, which turn out to be closely related to each other. More specifically, it is shown that, by exploiting algebraic properties of the state trajectory, a simple bisection algorithm can be devised to compute the exact magnitude of the periodic solution for a given value of stiction. Results: Through the geometric analysis of the impact map, this result is then used to find the minimum value of the integrator leakage to avoid the limit cycle. Conclusions: The work in this paper will be useful as a specific reference in designing servo mechanisms with stiction free from limit cycle.
منابع مشابه
Design Servo System Type and Positioning of Pole Observer Full Rank a Piezoelectric Servo Valve without Integrator
In this paper, the method of modern control approach for the design of controller and observer is used. Other functions such as neural controllers - or fuzzy sliding mode control can be found in this work and the results are compared. First, a dynamic model of the servo valve is intended for the governing equations in state-space form expression are obtained. Due to the system integrator is exp...
متن کاملOn the Sliding Mode Control for Dc Servo Mechanism in the Presence of Unmodeled Dynamics
In this paper, via describing function techniques, sliding mode control of DC servo mechanisms is analyzed in the presence of unmodeled dynamics. We first show that, a conventional sliding mode controller with signum function will inevitably generate a limit cycle where a second or higher order unmodeled dynamics exists. A fractional interpolation based smoothing scheme is then proposed to elim...
متن کاملSuppression of Stiction in MEMS
Stiction failures in microelectromechanical systems (MEMS) occur when suspended elastic members are unexpectedly pinned to their substrates. This type of device failure develops both in fabrication and during device operation, being a dominant source of yield loss in MEMS. Stiction failures require first a collapse force that brings the elastic member contact with the substrate followed by an i...
متن کاملAdaptive Speed Control of Three-Phase Induction Servo-drives Based on Feedback Linearization Theory
In this paper, based on feedback linearization control method and using a special PI (propotational integrator) regulator (IP) in combination with a feed-forward controller, a three-phase induction servo-drive is speed controlled. First, an observer is employed to estimate the rotor d and q axis flux components. Then, two input-output state variables are introduced to control the dynamics of to...
متن کاملAdaptive Speed Control of Three-Phase Induction Servo-drives Based on Feedback Linearization Theory
In this paper, based on feedback linearization control method and using a special PI (propotational integrator) regulator (IP) in combination with a feed-forward controller, a three-phase induction servo-drive is speed controlled. First, an observer is employed to estimate the rotor d and q axis flux components. Then, two input-output state variables are introduced to control the dynamics of to...
متن کامل